Abstract - A new partitioning approach integrates the power devices and drive of a high-efficiency synchronous-rectified buck converter for numerous advantages in low-voltage power systems. This approach, coupled with a low-cost voltage-mode controller, improves efficiency by eliminating the dissipative current-sensing resistor and reduces size with a smaller inductor. The resulting converter responds faster to dynamic loads typical of the new microprocessors. Integrated power MOSFETs improve switch timing, reduce EMI and ease thermal design issues.

Introduction

Synchronous rectification increases the efficiency of low output voltage DC-to-DC converters by replacing the rectifier with a MOSFET. The resultant voltage drop across the MOSFET is smaller than the forward voltage drop of a rectifier. The control and driver circuits maintain the timing of both MOSFETs in synchronism with the switching frequency. Figure 1 shows simplified buck DC-DC converter schematics with synchronous rectification. The upper MOSFET conducts to transfer energy from the input and the lower MOSFET conducts to circulate inductor current. The control block regulates the output voltage by modulating the pulse-width (PWM) or conduction intervals of the upper and lower MOSFETs.

Conventional synchronous-rectified buck converters partition the PWM control and synchronous drive functions into a single IC and drive discrete MOSFETs. The synchronous PWM control circuit regulates the output voltage with current-mode control. (These controllers require a current-sensing resistor in series with the output inductor and the resistance required dissipates as much power as the MOSFETs.) The discrete MOSFETs cause variable switching delays that require the addition of a Schottky rectifier across the lower MOSFET.

Repartitioning the control and power functions as shown in Figure 1B improves the converter performance. Integrating the upper and lower MOSFETs, their drive and steering logic, provides precise control of the MOSFET switching. This TechBrief describes an integrated power IC (SynchroFET [1]) with this partitioning. The IC accepts a logic-level PWM signal and causes the MOSFETs to switch complementary to one another. Using this approach with a low-cost voltage-mode PWM controller eliminates the current-sensing resistor. The resulting converter achieves high dynamic performance and improved efficiency at low cost. The next section describes a complementary-switching buck converter with voltage-mode control and compares its dynamic load performance with a standard buck converter. Subsequent sections discuss selection of the output inductor and the benefits of the integrated power circuit on performance, EMI, and thermal design.
Complementary Switching

In a conventional synchronous-rectifier buck converter, the control circuit and lower MOSFET emulate a rectifier and cause discontinuous inductor current at light load. For higher load currents, the inductor current is continuous. The load current boundary between continuous and discontinuous conduction is at a load current equal to one-half the peak-to-peak ripple current. Complementary switching of the power MOSFETs maintains continuous inductor current even at light loads. For load current above the boundary of continuous and discontinuous current, the behavior of the converter is the same for both methods.

Figure 2 shows the inductor current for both switching methods. Figure 2A illustrates the inductor current for a standard buck converter at light load. The rectifier (or a synchronous rectifier that emulates a diode) allows current flow in only one direction. Once the current drops to zero, the (synchronous) rectifier turns off. The voltage across the rectifier rings at a high frequency in the parasitic capacitance. Most converters have a snubber network (a series connected resistor and capacitor) to suppress this high frequency noise (EMI) and prevent it from interfering with other critical circuits.

![FIGURE 2A. STANDARD BUCK CONVERTER (DISCONTINUOUS CONDUCTION)](image)

![FIGURE 2B. COMPLEMENTARY-SWITCHING BUCK CONVERTER (CONTINUOUS CONDUCTION)](image)

Complementary switching of the power MOSFETs produces the inductor current shown in Figure 2B. At light load, the inductor current continues past zero because the lower MOSFET conducts current in both directions. The upper MOSFET turns-on with negative inductor current and transfers instantaneous power from the output to the input. (Complementary switching of the power MOSFETs is analogous to the operation of a Class D power amplifier.) This property removes one of the disadvantages of voltage-mode control for applications with a highly dynamic load.

Voltage-mode control is attractive for low-voltage buck DC-DC converters due to the simplicity of a single control loop, good noise immunity and a wide range of PWM duty ratio [2]. Voltage-mode converters do not require a dissipative resistor for sensing current (Note 1). However for a large dynamic load (no-load to full-load), a fast response is difficult to achieve for the standard buck converter with a rectifier. This is because the transfer function of voltage-mode buck converter changes from no-load (with discontinuous current) to full load. Figure 3 compares the transfer functions of a standard buck converter at light load (in discontinuous conduction) with the same converter at full-load (in continuous conduction). At light load, the power stage transfer function does not have the double pole (at the L-C filter frequency) characteristic of the full load transfer function. Discontinuous (light load) operation removes the inductor from the converter during a portion of each cycle and results in the single low-frequency pole as shown in Figure 3. The designer faces a difficult task of assuring stability with a single compensation network for both continuous and discontinuous conduction modes [3].

NOTE:

1. Protection against output overload and short-circuits utilize a simple output under-voltage detector that initiates a soft-start. In most power systems, a current limited source supplies the input of this converter. An overload or short-circuit causes the output voltage to fall below the under-voltage level and the detector initiates a soft-start to protect the power system.

Increasing the value (size and cost) of the output inductor moves the discontinuous conduction below the minimum expected load current. This eases the compensation network design, but the large inductor moves the double pole to a lower frequency. The large inductor value limits the rate of current ramp and results in a slow converter response to a large-signal dynamic. A buck converter with a complementary-switching synchronous-rectifier operates with continuous conduction (even at no-load) as shown in Figure 2B. The inductor...
selection is not constrained by a minimum load and discontinuous operation. With this converter, the output ripple specification and the output capacitor’s equivalent series resistance (ESR) determine the minimum output inductor value. A small output inductance enables a high-bandwidth DC-DC converter for driving fast dynamic loads (characteristic of modern microprocessors) [4].

The complementary-switching converter responds much faster than the standard buck converter (Note 2). Figure 4 illustrates the large-signal dynamic response for each converter with voltage-mode control. In Figure 4A the standard buck converter transitions from discontinuous conduction at the start of the load transient to continuous conduction. This illustrates the large-signal effect of changing the power stage transfer function (Figure 3). Figure 4B illustrates the response of the complementary-switching converter to a large signal load transient. The inductor current in the complementary-switching converter reaches 10A in less than 5μs versus 13μs for the standard buck converter. The output voltage of the standard buck converter sags to 2.75V and slowly recovers to its final value. In contrast, the output voltage of the complementary-switching buck converter falls to 2.8V and quickly recovers.

NOTE:
2. The responses compared here and shown in Figure 4 are the results of Spice simulations of each converter to large-signal load transient (No load to 10A in 330ns). Both the standard buck converter and a complementary-switching buck converter have identical output filters and compensation components and operate at 1MHz switching frequency.

Figure 4 illustrates the significance of large-signal operation on a converter with discontinuous current. However, the standard buck converter emulated has only a few degrees of phase margin at light load. A practical standard buck converter requires a larger output inductor and a minimum load specification. Additionally the compensation network requires redesign to provide adequate phase margin. Both increasing the inductance and increasing the phase margin lowers the bandwidth of the redesigned converter. Therefore, the complementary-switching buck converter still responds faster to a large load transient than the practical standard buck converter with voltage-mode control.

Integrated Drive and Power

Integrating the drivers and the power MOSFETs in Figure 1 in a single microcircuit offers several advantages over the conventional converter with discrete MOSFETs. These advantages include improved efficiency, higher switching frequency, lower cost, reduced EMI, and easier thermal design.

Synchronous rectification with discrete MOSFETs causes variable switching delays due to the variations in gate charge and threshold voltage from one MOSFET to another. Standard control circuits compensate for these variations by delaying the turn-on drive of the lower MOSFET until after the gate voltage of the upper MOSFET falls below a threshold. This prevents overlap in the conduction of upper and lower MOSFETs and eliminates shoot-through. The same method is used to delay the turn-on of the upper device. This causes a dead time where neither MOSFET conducts and the inductor current flows in the lower MOSFET’s body diode to store charge on this junction. Converter efficiency improves with the addition and expense of a Schottky rectifier to limit stored charge. A typical design delays the discrete MOSFET conduction with a 60ns dead time and limits the switching frequency to 300kHz.
An integrated synchronous-rectifier microcircuit such as Intersil’s SynchroFET [1], improves efficiency and enables higher switching frequencies. In contrast to a converter with discrete MOSFETs, an integrated power circuit design takes advantage of matched silicon parameters. Worst case analysis is less severe because similar parameters (such as gate charge and threshold) tend to track with process variations and operating conditions. Additionally, the body diodes of the integrated MOSFETs exhibit low stored charge and short reverse-recovery times. Integrated power devices eliminate several bond wires and their parasitic inductance from the critical high-speed connections. For example, the SynchroFET minimizes the dead time to under 20ns, switches with rise and fall times below 10ns, and operates at frequencies above 1MHz.

The SynchroFET reduces converter cost by eliminating extraneous components and utilizing a minimum number of low-cost components. The SynchroFET provides a logic input compatible with most low-cost PWM Control circuits. The built-in steering logic does not require a specialized synchronous-rectifier controller. Configuring the PWM controller for voltage-mode control eliminates the need for a current-sensing resistor. Complementary-switching of the power devices minimizes the output inductance which further reduces converter costs. Complementary switching eliminates the high frequency ringing (reduces EMI) at the inductor terminal and eliminates the need for a snubber network. The fast switching, the low stored charge of the body diodes, and the minimal dead time eliminate the need for an external Schottky diode.

EMI and thermal design issues benefit from integrated power devices. This is because the substrate (and tab on the TO-263 package) is at ground potential. This means that heat can transfer from power devices with a direct connection to the ground plane. Contrast this with discrete MOSFETs where the substrate is the drain. Cooling the discrete MOSFET requires large printed circuit traces on the drain connection. This is the input trace for the upper MOSFET and the switching node for the lower MOSFET. A large trace (for cooling) on the switching node causes capacitive current that could interfere (EMI) with sensitive circuits.

Summary

The SynchroFET integrates the upper and lower MOSFETs, their drivers and the steering logic of a synchronous-rectified buck converter into a single power IC. The MOSFETs switch complementarily to maintain continuous inductor conduction. Using a voltage-mode controller with complementary switching MOSFETs, results in a small, high-performance, efficient, and cost effective DC-DC converter. This approach reduces the converter’s size by minimizing the output inductance and by minimizing the number of converter components. Integrated power devices enable more precise timing control and reduces EMI and thermal design problems. Complementary-switching improves the converter’s performance and responds faster to large signal transients. The SynchroFET with a voltage-mode controller enhances efficiency by eliminating the current-sensing resistor. Additionally, this approach reduces cost by eliminating extraneous components and utilizing low-cost components. The resulting converter responds faster to dynamic loads typical of the new microprocessors.

References

For Intersil documents available on the web, see http://www.intersil.com

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality." The intended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 - "Standard": Computers, office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations, etc.), or may cause serious property damage (space systems; underwater探索器s; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failures at a certain rate and malfunctions under certain usage conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evolution of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note 2) “Renesas Electronics product” means any product developed or manufactured by or for Renesas Electronics.