Introduction

Today's high speed D/A converters are used in communications applications such as:

- Frequency Hopping Radios
- Cellular Base Stations
- Direct Digital Synthesis

These converters need to provide good Spurious Free operation to ensure signal integrity and low inter-channel interference.

The glitch of a given DAC can limit the overall spectral performance of the converter and make it unusable. There are many definitions of this phenomena known as glitch and this article will try to explain them.

Glitch Area

When a given converter is updated with a new data value the output of the DAC tries to generate a new output voltage. As shown in Figure 1 the output slews to a new final voltage. This step response contains glitch, and settling effects, that must die down in order to reach the new steady state output.

Glitch Cause

One cause of glitch is the time skew between bits of the incoming digital data. In a DAC that has no internal register, the time delta between logic inputs causes internal current sources to switch asynchronously resulting in a momentary surge in current. The HI5721 employs an internal register to synchronize the incoming data.

Typically the switching time of digital inputs are asymmetrical, meaning that the turn off time is faster than the turn on time. Unequal delay paths through the device can cause one current source to change before another.

To reduce this, an internal register is used to latch all the digital input data on one clock edge so as to synchronize them in time. Careful layout and sizing of the internal current sources also helps to maintain concurrent switching times.

Reducing Glitch

In traditional DACs the worst case glitch usually happens at the major transition i.e. 01 1111 1111 to 10 0000 0000. But in the HI5721, the worst case glitch is moved to the 00 0001 1111 to 11 1110 0000 transition. This is achieved by the split R/2R-segmented current source architecture, which decreases the amount of current switching at any one time and makes the glitch practically constant over the entire output range.
Deglitching Techniques

Deglitching the output of a high speed converter is no trivial task. Figure 3 shows an ideal deglitching circuit. A deglitcher is a sample and hold that holds the previous conversion while the converter is settling to the new output. A deglitching sample and hold potentially could have a hold to track glitch, that can be larger than the DAC’s glitch. The amplifiers in this circuit must be unity gain stable to 500MHz and have a settling time of 2ns for a 1VP-P swing to an error band of 0.1%.

The on resistance of the switch must be less than 2Ω and have a leakage of less than 1pA to minimize droop. This is practically impossible with the switches available on the market today. The best way to reduce glitch is to optimize the high speed DAC design as done in the Intersil HI5721.

Filtering Glitch

Since the glitch is a transient event this leads designers to believe that a simple low pass filter can be used to eliminate or reduce the size of the glitch. In effect low pass filtering a glitch tends to “smear” the event and does little to remove the energy of the transient. Glitch contains many spectra from near DC up to and beyond the Nyquist sampling rate of the converter. By low pass filtering, the high frequency components of the glitch are removed but the main or majority of low frequency components are not.

This leaves a designer with a usable spectral window however, this technique usually results in a higher noise floor at low frequencies. Noise also increases closest to the cutoff frequency of the filter.

Picking a Low Glitch D/A

The best methods for choosing a low glitch converter are to choose those that specify the first transient area and those converters that incorporate architectures to minimize glitch. Trying to remove the glitch from a ‘glitchey’ DAC is not trivial and can simply move the problem to other places as well as complicate the design.

The HI5721’s Peak Glitch

Although the HI5721 specifies a glitch doublet area of 1.5pV-sec (to meet specs quoted by other D/A manufacturers) the peak glitch is ~3.0pV-sec. Figures 4 and 5 show the typical glitch height and width.

Summary

Testing standards are evolving and as technology improves the real specifications become evident. For state of the art D/A converters, the HI5721 provides designers with the lowest glitch performance, tested under the most stringent conditions.
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.

- “Standard”: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment, industrial robots, etc.
- “High Quality”: Transportation equipment (automobiles, trains, ships, etc.), traffic control (traffic lights), large-scale communication equipment, key financial terminal systems, safety control equipment, etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implants, etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.) Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage ranges, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate or malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evolution of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note 2) “Renesas Electronics products” means any product developed or manufactured by or for Renesas Electronics.