Introduction of Proximity Sensing

As ambient light sensors play an increasingly important role in our lives, proximity sensing becomes a simple and inexpensive companion that enables a wide range of the applications to make our daily life easier.

Proximity sensing based upon infrared signal detection requires two parts: infrared LED and infrared sensor. The infrared LED emits infrared signal to the sensing object, a portion of that signal bounces back from the surface of sensing object, these reflected infrared signal was then captured by the infrared sensor. The intensity of captured infrared signal changes accordingly when an sensing object is getting closer or moving, the captured infrared signal is processed in real time through light to digital conversion to reveal the distance or even the motion of sensing object.

There are many design considerations to deal with the implementation complexities of infrared signal based proximity sensing solution. These involve mechanical design that includes component selections, component placement dimensions, glass cover characteristics, optical design and overall system design to achieve an optimal proximity sensing solution.

This application notes mainly cover mechanical design that is a critical component of the overall proximity sensing system solution, it involves LED selections, isolation techniques between sensor and LED, component placement dimensions and glass cover characteristics etc. The proximity sensing readout comparison based upon different design variations and trade-offs is used to decide optimal choice for different application and system requirement.

Proximity Sensing and Ambient Light Sensing Function

Most light source emissions are composed of both visible and infrared spectrum content. Different light sources can have similar visible light intensity in terms of lux but very different infrared spectrum response. The difference in the spectrum characterization and the spectral sensitivity of the photo detector has to be taken into account when measuring light intensity. A standard photo detector implemented on a typical CMOS process that detects mostly infrared radiation (peak sensitivity at 880nm) can cause false readings about the real ambient visible conditions.

For infrared-rich light sources like light bulbs, the photo detector signals are much higher than the amount seen by the human eye. Lighting solutions controlled by such sensors will not resemble the optimum brightness as felt by human eyes. To establish a more suitable dimming or lighting control as part of a system solution, it is essential to find a sensor which emulates human eyes as closely as possible.

Intersil’s integrated digital ambient light and proximity sensor is equipped with a programmable infrared LED driver, 16-bit analog to digital converter, interrupt functional control unit and I²C/SMBus digital interface. The device provides not only ambient light sensing to allow conventional backlight and display brightness adjustment but also proximity sensing for distance and motion detection.

For ambient light sensing, it functions like other ambient light sensor product. Figure 2 shows the architecture of charge integration ADC continuously counts up to 16-bit. The photo current stimulates charge which accumulates onto the integration capacitor depending on the number of clock cycles (up to 2¹⁶), then the op-amp and comparator helps to convert the analog photo current signal into digital output.

For infrared proximity sensing, the internal IR LED driver turns on and delivers from 12.5mA to 100mA to drive the external IR LED. Figure 3 shows the entire proximity detection cycle requires three different sequential phases: ambient light sensing, infrared sensing and proximity sensing.
When the integrated digital ambient light and proximity sensor is programmed in proximity sensing mode, the external IR LED is turned on by the built-in IR LED driver to sink 12.5mA, 25mA, 50mA or 100mA current based on user programmed choice.

When the infrared sensing signal from the LED reaches the sensing object and gets reflected back, the reflected infrared signal is captured by the infrared sensor and converted into photo current, then further converts into 16-bit digital data stream. The eventual proximity readout is linearly proportional to the reflected infrared signal intensity but inversely proportional to the square of the distance between proximity sensor and the sensing object. When under significant background infrared noise like direct sunlight, both infrared sensing phase and proximity sensing phase are needed for background noise cancellation.

Figure 4A illustrates when there is no sensing object in proximity detection path, no reflected infrared signal is bounced back to the proximity sensor, the proximity readout returns to default baseline counts. When the sensing object is within 10cm distance from the center point between the IR LED and the light sensor as shown in Figure 4B, the reflected infrared signal is captured by the sensor, the proximity readout is linearly proportional to the captured infrared light signal intensity and inverse proportional to the square of the distance.

Mechanical Design Considerations

IR LED Selections

It is important to choose an effective infrared LED that has typical peak wavelength matches the proximity sensor spectrum, a narrow viewing angle with higher radiant intensity will also help to concentrate the energy that is ideal for proximity sensing.

Different types of infrared LEDs make differences for proximity sensing detection distance. The photodiode array is very sensitive to various IR LED characteristics that include viewing angle, light intensity and typical peak spectrum wavelength. The detection infrared photodiode array is designed and self-calibrated to the peak wavelength of 850nm or 940/950nm, to match the infrared peak wavelength is obvious top priority. A narrow viewing angle also helps to concentrate the energy and infrared signal intensity. It is important to choose an infrared LED to balance the trade-offs among viewing-angle, mechanic height, footprint, radiant intensity and current consumption.
Component Placement Dimensions

Component placement plays a crucial role in the mechanical design as part of an proximity detection system. There are many deciding factors: space between sensor to barrier, distance from barrier to IR LED, barrier height variations, with or without light pipe, and light pipe difference in terms of dimensions, reflectivity and manufacturing materials etc. The following section provides implementation details based on the mechanical design that used to build typical evaluation board. It provides performance comparison in terms of proximity sensitivity for different placement considerations.

Figure 5 shows the conventional proximity sensing system solution with typical mechanical design dimensions. The center to center distance between sensor and LED is defined as A, the distance between sensor to barrier is defined as B, the distance between LED and barrier is defined as C, the height of barrier is defined as D.

The following sections illustrate these mechanical dimension variations by comparing proximity readout through ADC count. Figure 7, Figure 9 and Figure 11 only shows peak sensitivity corresponds to the variation of dimension A, B and C at very near detection distance (<10mm) although actual proximity sensing solution capable to detect much longer distance as shown in the data sheet.
Introduction of Proximity Sensing

PLACEMENT OF SENSOR RELATIVE TO IR LED

The IR LED and sensor need to be close to ensure better distance detection (as further distance lowers sensitivity). However, the closer the IR LED and the sensor, the greater the risk of crosstalk between the two components. A barrier is required to prevent the crosstalk between sensor and LED especially under glass. Figure 7 compares different distance variations between dimension A and proximity detection sensitivity.

FIGURE 5. TYPICAL MECHANICAL DESIGN DIMENSIONS

A = 4mm to 5mm
B = 0mm to 0.5mm
C = 0mm to 0.5mm
D = 2mm to 2.2mm

NOTE: RELATIVE TO 1.8mm TALL OSRAM IR LED (ADJUSTMENTS MAY NEED TO BE MADE WITH IR LED)

FIGURE 6. DIAGRAM OF LOCATION OF SENSOR AND LED

The IR LED and sensor need to be close to ensure better distance detection (as further distance lowers sensitivity). However, the closer the IR LED and the sensor, the greater the risk of crosstalk between the two components. A barrier is required to prevent the crosstalk between sensor and LED especially under glass. Figure 7 compares different distance variations between dimension A and proximity detection sensitivity.

FIGURE 7. PROXIMITY SENSOR OUTPUT VARYING THE DISTANCE BETWEEN THE SENSOR AND LED

12-BIT ADC, 4k GAIN, 12.5mA LED
NO LIGHTPIPE, NO FILTER/GLASS
18% KODAK GRAY CARD AS REFLECTOR
4mm CENTER-TO-CENTER LED TO SENSOR

DEVICE DISTANCE (mm) FROM OBJECT TO SENSOR

FIGURE 8. DIAGRAM HIGHLIGHTING THE SPACING BETWEEN THE SENSOR AND BARRIER

The distance of the barrier relative to the sensor plays a trade-off. The closer the barrier to the sensor, the greater the risk of a shadowing effect. The risk of a shadowing effect can be minimized by the use of a barrier that is just barely taller than the higher component (between sensor or IR LED). Figure 9 compares the proximity readout in terms of distance variations between sensor and barrier.

FIGURE 9. OUTPUT OF THE PROXIMITY SENSOR VARYING THE DISTANCE BETWEEN THE SENSOR AND BARRIER

PLACEMENT OF BARRIER RELATIVE TO IR LED

The distance between IR LED and barrier is constrained by two factors. The IR LED needs to be as close as possible to the sensor for optimal proximity sensing. However, the IR LED viewing angle can be affected if too close to the barrier. The use of a barrier that is slightly taller than the higher component (between IR LED or Sensor) in the system is suggested. The most effective distance between the Barrier and IR LED is 0mm to 0.5mm, when a 2.1mm tall barrier is used with a 1.8mm tall IR LED Sensor.
Introduction of Proximity Sensing

BARRIER HEIGHT

A barrier is needed between the sensor and IR LED to prevent crosstalk as shown in Figure 13. The barrier can only work effectively if the distance of the glass cover from the PCB is the exact height of barrier (glass cover is flush with the barrier). The taller the barrier, the greater risk of a shadowing effect for a narrowed viewing angle of IR LED. The optimal height of barrier is 2.1mm when using a 1.8mm tall IR LED, as seen in Figure 13.

CENTER TO OBJECT DISTANCE

The sensing distance is affected by the percentage transmittivity of glass cover used to enclose the system. If the glass cover has high percentage transmittivity for IR spectrum, then the detection distance can be easily extended beyond 50mm depending on sensing object. For the same detection distance, the more IR spectrum filter out by the glass cover, the larger LED driving current is required to compensate.

Glass Window Dimensions and Placement

For a flat surface lens, the viewing angle is a function of the refractive index of the plastic or glass material. A more dense material (higher refractive index) will have a less effective viewing angle. Snell’s law states that when a light ray which strikes at an angle and continues through a more dense material (plastic), the light bends towards the normal of the surface of the more dense material (Figure 14 (A)).

Consequently, a less dense medium will have a wider viewing angle than denser material. As an example, a plastic with refractive index of 1.57 will have a very limited viewing angle of less than 80° (Figure 14 (C)). On the other hand, a glass with an index of refraction of 1.3 will have a 101° viewing angle.

A window lens will surely limit the viewing angle of the sensor. The window lens should be placed directly on top of the device. The thickness of the lens should be kept at minimum to reduce loss of power due to reflection and also to minimize loss due to absorption in the plastic material. A thickness of t = 1mm is recommended. The bigger the width (or diameter) of the window lens, the wider the viewing angle is of the sensor. Table 1 shows the recommended dimensions of the optical window to ensure both 35° and 45° viewing angles. These dimensions are based on a window lens thickness of 1.0mm and a refractive index of 1.59.

FIGURE 11. OUTPUT OF PROXIMITY SENSOR FOR VARYING DISTANCE BETWEEN LED AND BARRIER

FIGURE 12. DIAGRAM OF PROXIMITY SET-UP HIGHLIGHTING THE HEIGHT OF THE BARRIER

FIGURE 13. OUTPUT OF PROXIMITY SENSOR WITH DIFFERENT BARRIER HEIGHTS

FIGURE 14. FLAT SURFACE LENS. (A) LIGHT RAY REFRACTS AFTER PASSING THROUGH A MEDIUM. (B) ANGLE OF INCIDENCE IS NORMAL TO SURFACE. (C) LIGHT INCIDENT IS GREATER THAN CRITICAL ANGLE.
USING BARRIER
In practical usage of Intersil Proximity Sensor, the sensor typically is placed beneath some sort of glass/plastic cover. The glass cover impacts the performance of the device by raising the noise floor. This is caused by part of the emitted IR Light from IR LED being reflected from the glass cover and reaching the sensor.

To prevent this, a barrier/blockade is strongly advised to be placed between the IR LED and the Sensor. The placement of the barrier to the sensor and LED is discussed in detail in earlier sections.

We recommend a barrier that is 0.8mm thick black plastic tube that encircles the IR LED. A barrier that fully encircles the IR LED allows for superior noise immunity.

In addition to encircling the IR LED, the height should be exact distance of glass cover to PCB. Still, the distance between glass cover and PCB should be minimized if possible. Figure 19 shows the improved performance of the device and lowering of the noise floor when a barrier is applied.

TABLE 1. RECOMMENDED DIMENSIONS FOR A FLAT WINDOW DESIGN

<table>
<thead>
<tr>
<th>D_{TOTAL}</th>
<th>D1</th>
<th>D_{LENS} @ 35° VIEWING ANGLE</th>
<th>D_{LENS} @ 45° VIEWING ANGLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>0.50</td>
<td>2.25</td>
<td>3.75</td>
</tr>
<tr>
<td>2.0</td>
<td>1.00</td>
<td>3.00</td>
<td>4.75</td>
</tr>
<tr>
<td>2.5</td>
<td>1.50</td>
<td>3.75</td>
<td>5.75</td>
</tr>
<tr>
<td>3.0</td>
<td>2.00</td>
<td>4.30</td>
<td>6.75</td>
</tr>
<tr>
<td>3.5</td>
<td>2.50</td>
<td>5.00</td>
<td>7.75</td>
</tr>
</tbody>
</table>

\[t = 1 \text{ Thickness of lens} \]
\[D1: \text{ Distance between sensor and inner edge of lens} \]
\[D_{LENS}: \text{ Diameter of lens} \]
\[D_{TOTAL}: \text{ Distance constraint between the sensor and lens outer edge} \]

NOTE: All dimensions are in mm

FIGURE 15. FLAT WINDOW LENS

FIGURE 16. DIAGRAM OF PROXIMITY SET-UP HIGHLIGHTING CROSSTALK REFLECTED FROM COVER GLASS

FIGURE 17. DIAGRAM OF PROXIMITY SET-UP HIGHLIGHTING A CIRCULAR BARRIER SURROUNDING THE LED

FIGURE 18. DIAGRAM OF PROXIMITY SET-UP HIGHLIGHTING THE ANGULAR SENSITIVITY OF THE SENSOR

FIGURE 19. PROXIMITY SENSOR OUTPUT TAKEN WITH AND WITHOUT A BARRIER
Proximity Sensor Algorithms

Once the electrical and mechanical design considerations of a proximity sensor are determined, it's important to test sensor in different product scenario. If the design requires the proximity sensor to identify an approaching object, then testing will reveal the output readings with respect to distance. The shape of the output depends on the composition of the object. The proximity response then allows the designer to select an appropriate detection scheme.

The output of the analog-to-digital converter (ADC count) has a typical response as shown in Figure 20.

The peak is shifted to a closer distance and the ADC count does not plummet at zero distance (Figure 21).

CASE 1 ALGORITHM

When the detected object is human skin, the design is somewhat simplified. Infrared light can penetrate human skin.
Introduction of Proximity Sensing

FIGURE 22. FLOW-CHART FOR PROXIMITY SYSTEM DETECTING HUMAN SKIN

1. INITIALIZE ISL29015
 \[\text{I}^2\text{C WRITE } &H88, &H00, &H60 \text{ 'OPERATION REGISTER: PROXIMITY ONCE} \]
 \[\text{I}^2\text{C WRITE } &H88, &H01, &H74 \text{ 'CONFIGURATION REGISTER: 50mA: 327kHz: 16-BIT: 1000 GAIN} \]

2. INITIALIZE DEVICE

3. SET PROX HIGH AND LOW THRESHOLD

4. TAKE PROX COUNT MEASUREMENT

5. IF PROX_COUNT > PROX_HIGH_THRESHOLD
 - SET "OBJECT CLOSE" FLAG HIGH
 - TAKE PROX COUNT MEASUREMENT
 - IF PROX_COUNT < PROX_LOW_THRESHOLD
 - SET "OBJECT CLOSE" FLAG LOW

6. USER PROGRAM VARIABLES
 - PROX_LOW_THRESHOLD = xxxx 'DECIMAL VALUE
 - PROX_HIGH_THRESHOLD = yyyy 'DECIMAL VALUE
 - OBJECT_CLOSE = FALSE 'BOOLEAN VARIABLE

DETAIL A: TAKE PROXIMITY COUNT MEASUREMENT DETAIL

- ISL29015 PROX-IR MEASUREMENT SEQUENCE
 - \[\text{I}^2\text{C WRITE } &H88, &H00, &H60 \text{ 'OPERATION REGISTER: PROXIMITY ONCE} \]
 - DELAY 120ms
 - \[\text{I}^2\text{C READ } &H89, &H02, \text{ LSB_BYTE, MSB_BYTE 'READ AD REG: 2 BYTES} \]
 - \[\text{PROX_RAW} = (\text{MSB} \times 256) + \text{LSB} \]
 - \[\text{I}^2\text{C WRITE } &H88, &H00, &H40 \text{ 'OPERATION REGISTER: IR ONCE} \]
 - DELAY 120ms
 - \[\text{I}^2\text{C READ } &H89, &H02, \text{ LSB_BYTE, MSB_BYTE 'READ AD REG: 2 BYTES} \]
 - \[\text{IR_RAW} = (\text{MSB} \times 256) + \text{LSB} \]
 - \[\text{PROX_COUNT} = \text{PROX_RAW} - \text{IR_RAW} \text{ 'SAVE CALCULATED PROXIMITY IN VARIABLE} \]
CASE 2 ALGORITHM

The case 2 algorithm is for a system with a response similar to the curve in Figure 20. Again, we would like to set a low and high threshold. However, the selection is more complicated since the low threshold selection will, most likely, cross the proximity response curve twice (Figure 23).

The lower threshold is used to identify the evacuation of an object from the area directly above the proximity sensor. Only one of the 2 crosspoints will correctly identify that situation, the second one on the right side of the peak.

To determine which of the objects distance has caused the threshold to be crossed, we sense the amount of ambient light (Figure 24). Ambient light can be used because the object will naturally obstruct ambient light as it approaches the sensor. Since the object blocks virtually no ambient light at large distances and blocks a continuously increasing amount of light as it approaches the sensor, the amount of ambient light gives us another measurement we can use to separate the two lower threshold crossings from each other.

The ambient light (by the Ambient Light Sensor) is sampled any time the high threshold is crossed. That value is stored in a register. When the low threshold is crossed, the ambient light is sampled again. If the ambient light reading is less than the value taken at the same low threshold, then we are on the left side of the curve—the low threshold crossing we want to ignore. However, if the ambient light reading is greater than the value taken at the high threshold, the object is further away from both sensors and we are on the right side of the curve. A microcontroller can be programmed to identify the real low threshold crossings. A flowchart describing the design methodology of case 2 is given in Figure 25.
CASE 2: ALGORITHM FOR PROX COUNT DECREASES AS THE OBJECT IS CLOSE TO THE GLASS.

```
CASE 2: ALGORITHM FOR PROX COUNT DECREASES AS THE OBJECT IS CLOSE TO THE GLASS.

START PROCESSOR
    POWER-UP

    INITIALIZE DEVICE

    SET PROX HIGH AND LOW THRESHOLD AND ALS THRESHOLD

    USER PROGRAM VARIABLES
    PROX_LOW_THRESHOLD = xxxx 'DECIMAL VALUE
    PROX_HIGH_THRESHOLD = yyy 'DECIMAL VALUE
    ALS_THRESHOLD = zzzz 'DECIMAL VALUE
    OBJECT_CLOSE = FALSE 'BOOLEAN VARIABLE

    TAKE PROX COUNT MEASUREMENT

    IF PROX_COUNT > PROX_HIGH_THRESHOLD
        OBJECT_CLOSE = TRUE
    ELSE
        TAKE ALS COUNT MEASUREMENT
        IF ALS_COUNT < ALS_THRESHOLD
            OBJECT_CLOSE = FALSE
        ELSE
            TAKE PROX COUNT MEASUREMENT
        END IF

    END IF
```

FIGURE 25. FLOW-CHART FOR PROXIMITY SYSTEM DETECTING GENERIC OBJECT
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

* "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

* "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or for a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; underwater repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failures or accidents arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless a Renesas Electronics product is designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating safety in the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.