LDMOS Transistor Bias Control in Basestation RF Power Amplifiers Using the ISL21400

Introduction

LDMOS transistors are used for RF Power Amplification in numerous applications from point-to-multipoint communications to Radar. The most pervasive application is in cell phone basestations. These RF Power Amplifiers (RFPA) provide from 5W to over 200W of output power per channel, and require very good linearity to maximize the data throughput in a given channel. The main point to consider is that linearity is the DC biasing of the LDMOS transistor for optimal drain current for a given power output. This bias needs to be held constant over temperature and time. Typically the target accuracy for bias current over temperature is ±5% but ±3% is much more desirable for a high performance design.

A simplified circuit of an LDMOS amplifier bias circuit is shown in Figure 1. The DC Bias on these amplifiers is set by applying a DC voltage to the gate (VGS) and monitoring the Drain current (IDD). Ideally, this IDD will be constant over temperature, but since the VGS of LDMOS amplifier devices varies with temperature, some type of temperature compensation is required. One method of setting this DC bias involves using an adjustable reference, DAC, or Digital potentiometer combined with a temperature compensation source, such as a transistor VBE multiplier. This solution can work well, but getting tight temperature compensation can be problematic since the VBE junction temperature characteristic for production transistors will vary. Also, the VGS tempco for LDMOS amplifiers will vary with IDD. The result is that there are variations in VBE junction characteristics as well as the LDMOS characteristics. For optimal temperature compensation, in-circuit adjustments need to be made for both the temperature compensation as well as the VGS bias itself.

A new way to bias an LDMOS amplifier is presented in the following, which involves digitally converting temperature information.

The ISL21400 Programmable Output Temperature Sensor IC

The ISL21400 is an analog output temperature sensor, which is programmable for both DC output voltage and temperature slope (see Figure 2). Two voltage reference blocks produce both temperature compensated and proportional to temperature outputs. There are two DACs inside the device which are programmed via the I2C bus interface. One DAC is for the voltage reference, the other is for the temperature sensor, and they provide 8-bit control to scale either output. The resulting output is summed and then a variable gain stage provides for a gain of 1, 2 or 4.

The DC voltage reference output is 1.20V nominal, and considering the DAC scaling and the gain available, this gives a DC output range of 0V to 4.8V (with a 5.0V supply). The nominal temperature slope is -2.1mV/°C, and this is scaled for both positive and negative slopes by the DAC. Including the gain stage, this provides for up to ±8.4mV/°C temperature slope.

FIGURE 1. RFPA SIMPLIFIED SCHEMATIC

FIGURE 2. ISL21400 BLOCK DIAGRAM
The ISL21400 is especially suited to temperature compensation functions due to the slope programmability and 2% accuracy of the temperature sensing function. The bias voltage produced by the device has both a programmable DC component and a temperature slope component. The voltage output is capable of driving nominal resistive loads with up to 0.5mA of DC output current, and can handle up to 500pF of capacitive loads. These characteristics are well suited to LDMOS applications where the output voltage is isolated from any capacitive load with a small resistor, and the bias current required is negligible.

Hardware Design using the ISL21400

RFPA bias control using the ISL21400 is very straightforward. The dashed rectangle highlights the RFPA circuit using an MRF9080 from NXP (formerly Freescale). The basic schematic is shown in Figure 3. The maximum supply voltage for the ISL21400 (U2) is 5.5V and U1 drops the LDMOS VDD supply from +26V to +5.0V for the U2 VCC supply. An LC filter is added to the U2 VCC supply to insure no RF energy is present on that supply line.

The ISL21400 output is connected to the LDMOS gate (VGG) through a lowpass filter, which blocks any RF energy from reaching the ISL21400. A series 100Ω output resistor (R2) isolates the filter capacitor from the VOUT pin to insure stability. Also, R2 allows a simple shutdown circuit to be added with Q2 and R3, which will provide a soft VGG clamp when the gate of Q2 is brought high (>2V). An open drain gate can be used as well as long as the leakage current at high temperatures is not excessive.

The ISL21400 SCL and SDA lines can be tied to a local microcontroller or to an I/O connector for external PC control and programming. The A0, A1, A2 pins are all tied to ground giving an I2C slave address of 0101000x, where x is the read/write bit.

FIGURE 3. RFPA BIAS CONTROL WITH THE ISL21400
This entire circuit was implemented on the RFPA evaluation board with the MRF9080. The ISL21400 is placed adjacent to the LDMOS device to get best temperature tracking. The register programming is done using a LabVIEW PC tool for software control and parallel port interface board, which has lines for SCL/SDA. The board is disconnected for testing in a temperature chamber.

Calculating the ISL21400 Register Values

The ISL21400 data sheet contains guidelines for calculating temperature slope using the three control registers: Offset, Slope and Gain control. We will use the equations given in the following sections to calculate the register values for this design.

In this circuit, the N-channel LDMOS transistor gate has approximately a -2.8mV/°C temperature coefficient from -10°C to +85°C. A constant bias drain current is desired, with a target VGS range derived from the data sheet of 2.5V to 3.5V at +25°C.

OFFSET SETTING

Using Equation 1 for setting VOUT offset and targeting VOUT = 3.0VDC:

\[V_{OUT(DC)} = A_V \cdot V_{REF} \cdot A_{REF} = 3.00V \]
\[V_{REF} = 1.20V \]
\[A_V \cdot A_{OS} = 2.50 \]

Note that \(A_{REF} \) varies from 0 to 1, so to get 2.40, \(A_V = 4 \), use Equation 2.

\[A(REF) = \frac{2.50}{4} = 0.625 = \frac{n}{255} \]
\[n = 159 \text{ decimal} = \text{9F hex} \]

The variable \(n \) corresponds to register address 0h, and the variable \(A_V \) is the gain register, which is address 02h.

TEMPERATURE SLOPE SETTING

Using Equation 3 for temperature slope, we can solve for Slope directly:

\[V_{OUT(TS)} = A_V \cdot K \cdot A_{PTAT} = -2.8mV/°C \]

\[A_{PTAT} = \frac{-2.8}{4} = -2.1 \]
\[A_{PTAT} = \frac{0.333}{2} = \frac{(2 \cdot m) \cdot 255}{255} \]
\[m = 170 \text{ decimal} = \text{A9 hex} \]

The variable \(m \) corresponds to address 01h.

The ISL21400 device is then programmed with these parameters for initial testing. Temperature chamber testing is then performed to verify performance, and if needed, adjustments to the register settings are implemented to optimize performance.

Note that since VGS drift is not perfectly linear with temperature, that the IDQ bias error will increase at the temperature extremes due to this nonlinearity.

Results

The amplifier platform was powered up with the VGG voltage clamped in shutdown mode until the ISL21400 was powered up and programmed. The initial setting for VGS = 3.0V was too low for the target value of \(I_{DO} = 600mA \) so the value for \(n \) was increased until a suitable \(I_{DO} \) close to the target was reached. The final register setting was \(n = 80h \).

The amplifier platform including the ISL21400 bias control circuit was placed in a temperature chamber and tested from -10°C ambient to +65°C. This resulted in board temperatures from -10°C to +90°C. The bias current was monitored (RF power OFF and input/output terminated in 50Ω) and results are shown in Figure 4. VGG bias voltage was monitored with a voltmeter tied to the drain of Q2 to limit parasitic effects on the LDMOS gate. The result is plotted in Figure 4 as well. Error from Ideal is shown in Figure 5.

Figure 5 includes ±5% range, and the amplifier stays within these limits fairly consistently, meeting the design goals. The initial setting for bias appears somewhat high at 620mA (compared to target of 600mA) but this is limited by the resolution of the ISL21400 at the gain = 4 setting. The next lowest offset level results in a bias of 568mA, which is too low.

One thing to note in this design or any that requires temperature compensation is the mechanical properties of the board mounting and the cooling system. In this example,
airflow over the LDMOS device and the temperature sensor was limited, which enhanced the resulting compensation. Also, the sensor was surface mounted with conductive grease next to the LDMOS device. In many designs, precise control over placement and airflow is not possible, but since calibration takes place after the assembly of the unit, these effects can be minimized as long as the final installation is similar to the calibration conditions.

LDMOS amplifiers also have a characteristic I_{DD} drift over time (drain current reduces for a given V_{GS}), as well as temperature. This can be addressed with either recalibration or purposely setting the I_{DD} bias high, knowing the drift will be in the negative direction.

References
1. NXP (formerly Freescale) Wireless Infrastructure Division
 2100 East Elliot Road
 Tempe, AZ 85284
 (800) 521-6274
 http://www.nxp.com/
2. Intersil Corporation
 1001 Murphy Ranch Road
 Milpitas, CA 95035
 http://www.intersil.com/
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims including patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 “High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implants; etc.), or may cause serious property damage (space system; underwater repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final product or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.