Diodes have long served as adequate rectifiers despite necessarily large input voltages and poor accuracy. The most common configuration for a simple diode peak detector (Figure 1) provides a mediocre 10% error for very large input voltages (Figure 2). If the diode is linearized, the necessary input voltage is only reduced to 1V peak for the same 10% error (Figure 2). However, development of high frequency op amps allows feedback circuitry to provide better accuracy and more sensitivity at the input. With feedback (Figure 3), peak detection is feasible at input voltages as small as 50mVrms.

Function of Feedback Diode Circuitry

The input stage consists of a high frequency op amp whose output is fed into both a diode (D1), which functions similar to the diode of a simple peak detector, and a clamping network, which limits the negative output swing of the forward op amp. The output of the diode (D1) is connected to the storage capacitor and is also fed back to the input through a buffer. A storage capacitor of 0.1µF is recommended for peak detection at audio frequencies. A small resistance is shown in series with the storage capacitor to isolate it from the feedback loop. The smallest functional value is recommended for minimal peaking and maximum bandwidth; 10Ω is suggested. A bleed current is necessary to allow the output to relax for a smaller input or in the absence of an input. 20µA, small enough to avoid deteriorating the output value substantially, but large enough to dominate the bias current of the feedback buffer, was chosen. The output of the buffer is fed back to the negative input of the forward op amp through a resistor. This resistor buffers the emitter of the pnp transistor of the clamping network from the low impedance at the output of the buffer. Please note: a compensation capacitor on the forward op amp may be a necessary addition to ensure stability and the output of the entire peak detection circuit must be buffered to prevent a disturbance in performance.

Clamping Network

The diode (D2) of the clamping network is always held on by the current source. For voltage signals greater than the peak held at the output, the forward, rectifying diode (D1) is conducting, the output voltage is raised to match the input voltage, the buffer feeds that voltage back around to the negative input of the forward op amp, and the emitter of the pnp transistor is held at the same voltage as its base, keeping it off and eliminating the second feedback loop.

For voltage signals less than the peak held at the output, the rectifying diode (D1) is off. The emitter of the pnp transistor is set as high as the output voltage by the buffer through the 1kΩ resistor while the base is pulled down by the output of the forward op amp through the feedback diode (D2). The 270Ω resistor adds a 0.3V bias to the base of the transistor producing a charge-discharge current ratio of 10,000:1. When the transistor turns on, a crude unity gain feedback loop is completed through the clamping network (from the output voltage, down a diode drop and up the base-emitter diode of the transistor, to the input voltage) and a voltage drop builds across the 1kΩ resistor. This clamping action minimizes the recovery time of the circuit. Since the clamping network works like a unity gain buffer for inputs less than the peak voltage, the output needs to slew less than one diode drop to turn on the rectifying diode (D1) for inputs greater than the peak voltage. In this manner, the clamping network prevents the forward op amp from exhibiting open loop behavior and railing negative for inputs less than the peak voltage. This greatly reduces the slew rate necessary to achieve a desired bandwidth.

Amplitude Considerations

This circuit has the ability to function with amplitudes 30 times smaller than a simple diode peak detector. The EL2244 has an open loop gain of 60dB, raising smaller input signals enough to be detectable by the diode. The smallest amplitudes recoverable will be determined by the noise amplified within the circuit. For the given circuit, this limit is approximately 30mVrms input voltage. The largest amplitudes allowable will be determined by the input constraints of the op amp. For the EL2244 at ±5V supplies, the maximum input range is approximately ±3.5V.

Frequency Considerations

If 5% errors can be tolerated, this circuit has a bandwidth of 100kHz (Figure 4), making it ideal for audio applications. A great deal of small signal bandwidth and large slew rates are necessary to swing quickly through the dead zone at the output of the first op amp and these quantities limit circuit performance.

Thus, for a handful of inexpensive parts, a drastic improvement can be made in the performance of a peak detector over that of a simple diode. With the utilization of modern, high-speed op amps, the feedback diode peak detector offers almost two decades of input voltage range improvement while maintaining functionality into the megahertz range.

An Improved Peak Detector

FIGURE 1. SIMPLE DIODE PEAK DETECTOR

FIGURE 2. ERROR vs AMPLITUDE

FIGURE 3. DIODE WITH FEEDBACK

FIGURE 4. ERROR vs FREQUENCY
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 - “Standard”: Computers, office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots, etc.
 - “High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations, etc.), or may cause serious property damage (space system; underwater repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failures or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to, redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note 2) “Renesas Electronics products” means any product developed or manufactured by or for Renesas Electronics.

© 2018 Renesas Electronics Corporation. All rights reserved.
Colophon 7.0

SALES OFFICES

Renesas Electronics America Inc.
1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A.
Tel: +1-408-432-8888, Fax: +1-408-434-5351

Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004

Renesas Electronics Europe Limited
Dukels Meadow, Millbrook Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: +44-1628-651-700, Fax: +44-1628-651-804

Renesas Electronics (China) Co., Ltd.
Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Hong Kong) Limited
Unit 30th Floor, A, Central Tower, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara AirCorp, AirCorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India
Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd.
17F, KAMCO Yangjae Tower, 262, Gangnam-gu, Gangnam-gu, Seoul, 06265 Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5358

Refer to “http://www.renesas.com/” for the latest and detailed information.