Assumptions
This Technical Brief makes the following assumptions:

1. The power supply designer has already designed the power stage of the single phase buck converter. The last step to the design is the compensation network.
2. The designer has at least a basic understanding of control systems theory.
3. The designer has a basic understanding of Bode plots.

Introduction
Synchronous and non-synchronous buck regulators have three basic blocks that contribute to the closed loop system. These blocks consist of the modulator, the output filter, and the compensation network which closes the loop and stabilizes the system.

Modulator
The modulator is shown in Figure 2. The input to the modulator is the output of the error amplifier, which is used to compare the output to the reference.

Output Filter
The output filter consists of the output inductor and all of the output capacitance. It is important to include the DC resistance (DCR) of the output inductor and the total Equivalent Series Resistance (ESR) of the output capacitor bank. The input to the output filter is the PHASE node and the output is the regulator output. Figure 3 shows the equivalent circuit of the output filter and its transfer function.

Open Loop System
Figure 4 illustrates the open loop system and presents the transfer function.

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.

Copyright © Intersil Americas Inc. 2003. All Rights Reserved

All other trademarks mentioned are the property of their respective owners.
Figure 5 shows the asymptotic Bode plot of the open loop system gain.

![Asymptotic Bode Plot](image)

FIGURE 5. OPEN LOOP SYSTEM GAIN

Figure 5 represents a generic open loop system. Specific systems will have different double pole and ESR zero frequencies. For systems with very low DCR and ESR parameters, the phase will experience a very sharp slope downward at the double pole while the gain will have a rather high peak at the double pole. Systems that have such resonant output filters will be more difficult to compensate since the phase will need an extra boost to provide the necessary phase margin for stability. Systems such as this will typically need a Type III compensation, which will be discussed later in this brief.

Closing The Loop - The Compensation Network

Closing the control loop allows the regulator to adjust to load perturbations or changes in the input voltage which may adversely affect the output. Proper compensation of the system will allow for a predictable bandwidth with unconditional stability. In most cases, a Type II or Type III compensation network will properly compensate the system. The ideal Bode plot for the compensated system would be a gain that rolls off at a slope of -20dB/decade, crossing 0dB at the desired bandwidth and a phase margin greater than 45° for all frequencies below the 0dB crossing. For synchronous and non-synchronous buck converters, the bandwidth should be between 20 to 30% of the switching frequency.

Type II Compensation

Figure 6 shows a generic Type II compensation, its transfer function and asymptotic Bode plot. The Type II network helps to shape the profile of the gain with respect to frequency and also gives a 90° boost to the phase. This boost is necessary to counteract the effects of the resonant output filter at the double pole.

If the output voltage of the regulator is not the reference voltage then a voltage programming resistor will be connected between the inverting input to the error amplifier and ground. This resistor is used to offset the output voltage to a level higher than the reference. This resistor, if present, has no effect on the compensation and can be ignored.

Figure 7 shows the closed loop system with a Type II compensation network and presents the closed loop transfer function.

The following guidelines will help calculate the poles and zeroes, and from those the component values, for a Type II network.

1. Choose a value for \(R_1 \), usually between 2k and 5kΩ.
2. Pick a gain \(\frac{R_2}{R_1} \) that will shift the Open Loop Gain up to give the desired bandwidth. This will allow the 0dB crossover to occur in the frequency range where the Type II network has a flat gain. The following equation will calculate an \(R_2 \) that will accomplish this given the system parameters and a chosen \(R_1 \).

\[
R_2 = \left(\frac{F_{ESR}}{F_{LC}} \right)^2 \cdot \frac{DBW}{ESR} \cdot \frac{\Delta V_{OSC}}{V_{IN}} \cdot R_1
\]

3. Calculate \(C_2 \) by placing the zero a decade below the output filter double pole frequency:

\[
C_2 = \frac{10}{2\pi \cdot R_2 \cdot F_{LC}}
\]

4. Calculate \(C_1 \) by placing the second pole at half the switching frequency:

\[
C_1 = \frac{C_2}{\pi \cdot R_2 \cdot C_2 \cdot F_{SW} \cdot 1}
\]

Figure 8 shows the asymptotic Bode gain plot and the actual gain and phase equations for the Type II compensated system. It is recommended that the actual gain and phase plots be generated through the use of commercially available analytical software. Some examples of software that can be used are Mathcad, Maple, and Excel. The asymptotic plot of the gain and phase does not portray all the necessary information that is needed to determine stability and bandwidth.

The compensation gain must be compared to the open loop gain of the error amplifier. The compensation gain should not exceed the error amplifier open loop gain because this is the limiting factor of the compensation. Once the gain and phase plots are generated and analyzed, the system may need to be changed somewhat in order adjust the bandwidth or phase margin. Adjust the location of the pole and/or zero to modify the profile of the plots.

If the phase margin proves too difficult to correct, then a Type III system may be needed.
FIGURE 6. GENERIC TYPE II NETWORK
FIGURE 7. CLOSED LOOP SYSTEM WITH TYPE II NETWORK

\[
\text{GAIN}_{\text{SYSTEM}} = \frac{1}{R_1 \cdot C_1} \left(\frac{s + \frac{1}{R_2 \cdot C_2}}{s + \frac{1}{R_2 \cdot C_2}} \right) \cdot \frac{V_{\text{IN}}}{\Delta V_{\text{OSC}}} \left(1 + s \cdot \text{ESR} \cdot C_{\text{OUT}} \right) \cdot \frac{1 + s \cdot \text{ESR} \cdot C_{\text{OUT}}}{1 + s \cdot (\text{ESR} + \text{DCR}) \cdot C_{\text{OUT}} + s^2 \cdot L_{\text{OUT}} \cdot C_{\text{OUT}}}
\]

FIGURE 8. TYPE II COMPENSATED NETWORK

\[
\text{GAIN}_{\text{dB}}(f) = \text{GAIN}_{\text{MODULATOR}} + \text{GAIN}_{\text{FILTER}} + \text{GAIN}_{\text{TYPEII}}
\]

\[
\text{PHASE}(f) = \text{PHASE}_{\text{MODULATOR}} + \text{PHASE}_{\text{FILTER}} + \text{PHASE}_{\text{TYPEII}}
\]

Where:

\[
\text{GAIN}_{\text{MODULATOR}} = -20 \cdot \log \left(\frac{V_{\text{IN}}}{\Delta V_{\text{OSC}}} \right)
\]

\[
\text{GAIN}_{\text{FILTER}} = 10 \cdot \log \left[1 + (2 \pi f \cdot \text{ESR} \cdot C_{\text{OUT}})^2 \right] - 10 \cdot \log \left[(1 + (2 \pi f)^2 \cdot L_{\text{OUT}} \cdot C_{\text{OUT}} + (2 \pi f \cdot (\text{ESR} + \text{DCR}) \cdot C_{\text{OUT}})^2 \right]
\]

\[
\text{PHASE}_{\text{FILTER}} = \text{atan} \left[\frac{2 \pi f \cdot \text{ESR} \cdot C_{\text{OUT}}}{2 \pi f^2 \cdot L_{\text{OUT}} \cdot C_{\text{OUT}} + 1} \right] + \text{atan} \left[\frac{2 \pi f \cdot \text{ESR} \cdot DCR \cdot C_{\text{OUT}}}{2 \pi f^2 \cdot L_{\text{OUT}} \cdot C_{\text{OUT}} + 1} \right]
\]

\[
\text{GAIN}_{\text{TYPEII}} = 10 \cdot \log \left[1 + (2 \pi f \cdot R_2 \cdot C_2)^2 \right] - 20 \cdot \log \left[2 \pi f \cdot R_2 \cdot (C_1 + C_2) \right] - 10 \cdot \log \left[1 + (2 \pi f \cdot R_2 \cdot (C_1 + C_2)^2 \right]
\]

\[
\text{PHASE}_{\text{TYPEII}} = -90^\circ + \text{atan} \left[2 \pi f \cdot R_2 \cdot C_2 \right] - \text{atan} \left[2 \pi f \cdot R_2 \cdot \frac{C_1 \cdot C_2}{C_1 + C_2} \right]
\]
Type III Compensation

Figure 9 shows a generic Type III compensation, its transfer function and asymptotic Bode plot. The Type III network shapes the profile of the gain with respect to frequency in a similar fashion to the Type II network. The Type III network, however, utilizes two zeroes to give a phase boost of 180°. This boost is necessary to counteract the effects of an under damped resonance of the output filter at the double pole.

Figure 10 shows the closed loop system with a Type III compensation network and presents the closed loop transfer function.

The guidelines for positioning the poles and zeroes and for calculating the component values are similar to the guidelines for the Type II network.

1. Choose a value for R_1, usually between 2k and 5kΩ.
2. Pick a gain (R_2/R_1) that will shift the Open Loop Gain up to give the desired bandwidth. This will allow the 0dB crossover to occur in the frequency range where the Type III network has its second flat gain. The following equation will calculate an R_2 that will accomplish this given the system parameters and a chosen R_1:

 $R_2 = \frac{DBW \cdot \Delta V_{OSC}}{F_{LC} \cdot V_{IN}} \cdot R_1$

3. Calculate C_2 by placing the zero at 50% of the output filter double pole frequency:

 $C_2 = \frac{1}{\pi \cdot R_2 \cdot F_{LC}}$

4. Calculate C_1 by placing the first pole at the ESR zero frequency:

 $C_1 = \frac{C_2}{2 \cdot \pi \cdot R_2 \cdot C_2 \cdot F_{ESR}}$

5. Set the second pole at half the switching frequency and also set the second zero at the output filter double pole. This combination will yield the following component calculations:

 $R_3 = \frac{R_1}{\frac{F_{SW}}{F_{LC}} - 1}$

 $C_3 = \frac{1}{\pi \cdot R_3 \cdot F_{SW}}$

Figure 11 shows the asymptotic Bode gain plot for the Type III compensated system and the gain and phase equations for the compensated system. As with the Type II compensation network, it is recommended that the actual gain and phase plots be generated through the use of a commercially available analytical software package that has the capability to plot.

The compensation gain must be compared to the open loop gain of the error amplifier. The compensation gain should not exceed the error amplifier open loop gain because this is the limiting factor of the compensation. Once the gain and phase plots are generated the system may need to be changed after it is analyzed. Adjust the poles and/or zeroes in order to shape the gain profile and insure that the phase margin is greater than 45°.
FIGURE 9. GENERIC TYPE III NETWORK
FIGURE 10. CLOSED LOOP SYSTEM WITH TYPE III NETWORK

FIGURE 11. TYPE III COMPENSATED NETWORK
Example

The following example will illustrate the entire process of compensation design for a synchronous buck converter.

Converter Parameters

Input Voltage: \(V_{\text{IN}} \) 5V
Output Voltage: \(V_{\text{OUT}} \) 3.3V
Controller IC: IC ISL6520A
Osc. Voltage: \(\Delta V_{\text{OSC}} \) 1.5V
Switching Frequency: \(f_{\text{SW}} \) 300kHz
Total Output Capacitance: \(C_{\text{OUT}} \) 990µF
Total ESR: \(E_{\text{SR}} \) 5mΩ
Output Inductance: \(L_{\text{OUT}} \) 900nH
Inductor DCR: \(D_{\text{CR}} \) 3mΩ
Desired Bandwidth: \(\text{DBW} \) 90kHz

First, a Type II compensation network will be attempted. The low ESR of the output capacitance and the low DCR of the output inductor may make the implementation of a Type II network difficult.

The guidelines given for designing a Type II network were followed in order to calculate the following component values:

- \(R_1 = 4.12k\Omega \) (chosen as the feedback component)
- \(R_2 = 125.8k\Omega \)
- \(C_1 = 8.464\text{pF} \)
- \(C_2 = 2.373\text{nF} \)

These calculated values need to be replaced by standard resistor values before the gain and phase plots can be plotted and examined.

- \(R_1 = 4.12k\Omega \)
- \(R_2 = 125.8k\Omega \)
- \(C_1 = 8.464\text{pF} \)
- \(C_2 = 2.373\text{nF} \)

Upon analysis of the bode plots in Figure 12, it can be seen that the system does not meet the stability criteria previously set. The bode plot for the gain is acceptable. The gain rolls off at 20dB/decade with a perturbation at the resonant point of the LC filter. After the perturbation, the gain again begins to roll off about 20dB/decade until it crosses 0dB right around 90kHz. The phase plot shows the problem with this Type II system. The low ESR and DCR values create a very sharp slope downward at the double pole of the LC filter.

The guidelines for the Type III network were then followed to produce the following component values:

- \(R_1 = 4.12k\Omega \) (chosen as the feedback component)
- \(R_2 = 20.863k\Omega \)
- \(R_3 = 151.85\Omega \)
- \(C_1 = 0.2587\text{nF} \)
- \(C_2 = 2.861\text{nF} \)
- \(C_3 = 6.987\text{nF} \)

Again, these calculated values need to be replaced by standard resistor values before the gain and phase plots can be plotted and examined.

- \(R_1 = 4.12k\Omega \)
- \(R_2 = 20.5k\Omega \)
- \(R_3 = 150\Omega \)
- \(C_1 = 0.22\text{nF} \)
- \(C_2 = 2.7\text{nF} \)
- \(C_3 = 6.8\text{nF} \)

The gain plot of the Type III compensated system in Figure 13 looks very good. The gain rolls off at -20dB/decade from low frequency all the way to the 0dB crossover with a small perturbation from the LC filter double pole resonant point. The phase plot shows a system that is unconditionally stable.
FIGURE 12. BODE PLOT OF THE TYPE II SYSTEM EXAMPLE
FIGURE 13. BODE PLOT OF THE TYPE III SYSTEM EXAMPLE