Introduction

The following text describes the basic test procedures that can be used for most Intersil Op Amps. Note that all measurement conversions have been taken into account in the equations stated.

1. Offset Voltage

The offset voltage (V_{IO}) of the amplifier under test (AUT) is measured via Test Circuit 1 as follows:

1. Set V_+ and V_- supplies to values specified in Table 1, Column (1) and V_{DC} to 0V.
2. Close S1 and S2, open S3.
4. Measure voltage at E in volts (label as E_1).

$$V_{IO} = E_1 \times 10^4 \mu V$$

The gain of this circuit with $R_F = 50K$ ($R_F = 5M$) requires the output to be driven to 1000 (100,000) times the offset voltage necessary to maintain the output of the AUT at 0V. Note that the AUT output is always identical to V_{DC}. Overall circuit stability is maintained by the adjustable feedback capacitor C_A.

2. Input Bias Current

The bias current flowing in or out of the positive terminal of the AUT (I_{B+}) is obtained using Test Circuit 1 by:

1. Measuring E_1 as in procedure 1 (use $R_S = 100K$ for JFET input devices).
2. Maintain V_{DC} at 0V.
3. Close S2, open S1 and S3.
4. Measuring voltage at E in volts (label as E_2).

$$I_{B+} = \frac{E_1 - E_2}{10^4} \text{nA}$$

The bias current flowing in or out of the negative terminal (I_{B-}) is found by:

1. Following steps 1 and 2 for I_{B+}.
2. Close S1, open S2 and S3.
3. Measuring voltage at E in volts (label as E_3).

$$I_{B-} = \frac{E_1 - E_3}{10^4} \text{nA}$$

4. Power Supply Rejection Ratio

Both positive and negative PSRRs are measured via Test Circuit 1. For PSRR+:

1. Close S1 and S2, open S3.
2. Choose: $R_F = 50K$
3. Set $V_{DC} = 0$, $V_+ = 10V$, and $V_- = -15V$.
4. Measure voltage at E in volts (label as E_5).
5. Change V_+ to +20V.
6. Measure voltage at E in volts (label as E_6).

$$PSRR_+ = 20 \log_{10} \left(\frac{10^4}{E_5 - E_6} \right) \text{dB}$$

Similarly for PSRR-:

1. Follow steps 1 and 2 for PSRR+ above.
2. Set $V_{DC} = 0V$, $V_+ = +15V$, and $V_- = -10$.
3. Measure voltage at E in volts (label as E_7).
4. Change V_- to -20V.
5. Measure voltage at E in volts (label as E_8).

$$PSRR_- = 20 \log_{10} \left(\frac{10^4}{E_7 - E_8} \right) \text{dB}$$

5. Common Mode Rejection Ratio

The CMRR is determined by adjusting Test Circuit 1 as follows:

1. Close S1 and S2, open S3.
2. Choose: $R_F = 50K$
3. Set $V_+ = +5V$, $V_- = -25V$, and $V_{DC} = -10V$.
4. Measure voltage at E in volts (label as E_9).
5. Set $V_+ = 25V$, $V_- = -5V$, and $V_{DC} = 10V$.
6. Measure voltage at E in volts (label as E_{10}).

$$CMRR = 20 \log_{10} \left(\frac{2 \times 10^4}{E_9 - E_{10}} \right) \text{dB}$$

6. Output Voltage Swing

Test Circuit 2 is adjusted to measure V_{OUT+} and V_{OUT-} the procedure is:

1. Select appropriate V_+ and V_- supply values from Table 1, Column 1.
2. Select specified R_L from Table 1, Column 2.
3. Set V_IN = 0.5V.
4. Measure voltage at E in volts. V_OUT+ = E (V)

Similarly V_OUT+ is found by:
1. Selecting specified R_L from Table 1, Column 1.
2. Setting V_IN = -0.5V.
 \[V_OUT+ = E (V) \]

7. Output Current

The output current corresponding to the output voltage of procedure 6 is found by:
 \[I_{OUT+} = \frac{V_{OUT+}}{R_L} \text{ where } R_L \text{ is from Table 1, Column 2.} \]
 \[I_{OUT-} = \frac{V_{OUT-}}{R_L} \text{ where } R_L \text{ is from Table 1, Column 2.} \]

8. Open Loop Gain

Both positive (AVOL+) and negative (AVOL-) open loop gain measurements are determined by adjusting Test Circuit 1.

For AVOL+:
1. Close S1, S2 and S3.
2. Select specified R_L from Table 1, Column 3.
3. Set R_F = 50K.
4. Set V_DC = 0V, V+ = +15V, and V- = -15V.
5. Measure voltage at E in volts (label as E13).
6. Set V_DC = 10V.
7. Measure voltage at E in volts (label as E14).
 \[AVOL+ = \frac{10}{E_{14} - E_{13}} (V/mV) \text{ for } R_F = 50K \]

For AVOL-:
1. Follow steps 1, 2, 3, 4, and 5 above.
2. Set V_DC = -10V.
3. Measure voltage at E in volts (label as E15).
 \[AVOL- = \frac{10}{E_{13} - E_{15}} (V/mV) \text{ for } R_F = 50K \]

9. Slew Rate

Test Circuit 3 is used for measurement of positive and negative slew rate. For SR+:
1. Select specified R_L, A_CL, and C_L from Table 1, Columns 4, 5 and 6.
2. Apply a positive step voltage to V_AC (refer to data book for test waveform).
3. Observe \(\Delta V \) and \(\Delta t \) at E. A standard approach is to use the 10% and 90% points or else the 25% and 75% points on the waveform.

\[SR = \frac{\Delta V}{\Delta t} \]

For SR- repeat above procedure with negative input pulse.
\[SR^- = \frac{\Delta V}{\Delta t} \]

10. Full Power Bandwidth

Full power bandwidth is calculated by:
1. Measuring slew rate as above in procedure 9.
2. Measuring V_OUT+ as in procedure 6. (Typically V_OUT+ is assumed to be the guaranteed minimum V_OUT, usually 10V.)
 \[FPBW = \frac{SR+}{2\pi V_{OUT(PEAK)}} \]

11. Rise Time, Fall Time and Overshoot

The small signal step response of the AUT is determined via Test Circuit 3. The procedure requires:
1. Selecting the appropriate R_L, A_CL, and C_L from Table 1, Columns 4, 5 and 6.
2. Applying a positive input step voltage for rise time t_R and positive overshoot OS+.
 Applying a negative input step voltage for fall time t_F and negative overshoot OS-.
 (Refer to data book for input waveforms.)
3. Observe output of AUT noting the key points as shown.
12. Settling Time

Test Circuit 6 is appropriate for settling time (t_S) measurement, the procedure is:

1. Select R_1 and R_2 such that AUT is at the A_CL stated in Table 1, Column 5.
2. Select R_3 and R_4 so that R_3 ≥ 2R_1 and R_4 ≥ 2R_2 with the condition that the ratio
 \[\frac{R_3}{R_1} = \frac{R_4}{R_2} \]
 be maintained.
3. Apply step voltage as specified in data book.
4. Measure the time from t_1 (time input step applied) to t_2 (the time E_S settles to within a specified percentage of V_OUT - see data book). t_S = t_2 - t_1

NOTE: Clipping diodes of Test Circuit 6 prevent overdrive of oscilloscope. (Recommend fast Schottky diodes.)

13. Gain Bandwidth Product

Test Circuit 4 is used for measuring GBP. The procedure is:

1. Sweep V_IN thru the required frequency range.
2. With a network analyzer view gain (dB) versus frequency as below.

 ![Gain Bandwidth Product Diagram]

3. At the voltage gain of interest (A_V) determine the corresponding frequency f_C. Note that chosen A_V must be greater than or equal to that stated in column 5 of Table 1. GBP = A_V x f_C (Hz) where A_V is in V/V.

14. Phase Margin (Network Analyzer Method)

Test Circuit 4 is used to obtain phase margin measurement. The procedure is:

1. Sweep V_IN thru the required frequency range.
2. Display gain in dB and phase in degrees versus frequency on analyzer as shown.

3. At a gain of 0dB (if A_CL = 1 in Table 1, column 5), record frequency f_1 and corresponding phase P_1. Phase margin = 180 degrees - P_1 degrees.

15. Input Noise Voltage

Test Circuit 5 is designed for measuring input noise voltage. Use of the Quantec Noise Analyzer is recommended to obtain measurements at 1Hz bandwidth around a specific center frequency. The procedure is:

1. Set R_G = 0
2. Set circuit card to gain of 10.
3. Select measurement frequency of interest.
4. Record noise voltage (label as E_n1). Units are nV/√Hz.

16. Input Noise Current

Using Test Circuit 5, the input noise current is obtained by:

1. Measure E_n1 as above for the desired frequency of interest.
2. Adjust R_G so that V_O > 2E_n1 (label V_O as E_n2).

 \[I_n = \sqrt{\frac{(E_{n2})^2 - (E_{n1})^2 - 4kTR_G}{R_G^2}} \]

 Where K = 1.38 x 10^{-23} (Boltzmann's Constant)
 T = 300 K (27°C)

17. Channel Separation (Crosstalk)

Test Circuit 7 is used to measure channel separation (CS). The procedure is as follows:

1. Apply V_IN at the frequency of interest to input of channel 1.
2. Select R_L from Table 1, column 4.
4. Measure V_O2 of channel 2.

 \[CS = 20 \log_{10} \left| \frac{V_{O2}}{100V_{O1}} \right| \text{dB} \]
TABLE 1.

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>(1) SUPPLY VOLTAGE (V_S)</th>
<th>(2) V_{OUT} R_L(kΩ)</th>
<th>(3) A_{VOL} R_L(kΩ)</th>
<th>SLEW RATE, OS, I_R, I_F</th>
<th>(4) R_L(kΩ)</th>
<th>(5) A_{CL}</th>
<th>(6) C_L(pF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HA-2400/04/05</td>
<td>±15</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>HA-2500/02/05</td>
<td>±15</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>HA-2510/12/15</td>
<td>±15</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>HA-2520/02/05</td>
<td>±15</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>HA-2539</td>
<td>±15</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>HA-2540</td>
<td>±15</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>HA-2541</td>
<td>±15</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>HA-2542</td>
<td>±15</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>HA-2600/02/05</td>
<td>±15</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>HA-2620/02/05</td>
<td>±15</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>HA-2640/05</td>
<td>±40</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>HA-4741</td>
<td>±15</td>
<td>10</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>HA-5101</td>
<td>±15</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>HA-5102/04</td>
<td>±15</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>HA-5111</td>
<td>±15</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>HA-5112/14</td>
<td>±15</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>HA-5127</td>
<td>±15</td>
<td>0.6</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>HA-5130/05</td>
<td>±15</td>
<td>0.6</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>HA-5134</td>
<td>±15</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>HA-5137</td>
<td>±15</td>
<td>0.6</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>HA-5141/12/14</td>
<td>+5/0</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>1</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>HA-5147</td>
<td>±15</td>
<td>0.6</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>HA-5151/12/14</td>
<td>±15</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>1</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>HA-5160/62</td>
<td>±15</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>HA-5170</td>
<td>±15</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>HA-5180</td>
<td>±15</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>HA-5190/95</td>
<td>±15</td>
<td>0.2</td>
<td>0.2</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
Test Circuits

TEST CIRCUIT 1

TEST CIRCUIT 2

TEST CIRCUIT 3

TEST CIRCUIT 4

TEST CIRCUIT 5
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site www.intersil.com

Sales Office Headquarters

NORTH AMERICA
Intersil Corporation
P. O. Box 883, Mail Stop 53-204
Melbourne, FL 32902
TEL: (321) 724-7000
FAX: (321) 724-7240

EUROPE
Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05

ASIA
Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310
FAX: (886) 2 2715 3029

Test Circuits (Continued)